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1 Introduction

The Banach-Saks property relates boundedness to convergence under the
norm of the arithmetic mean, for a Banach space.

Definition 1.1. A Banach space X is said to have the Banach-Saks property
if every bounded sequence (xn)n∈N ⊂ X contains a subsequence (xnj )j∈N such
that [1]

sk =
1

k

k∑
j=1

xnj , (1)

is norm convergent.

We will show that every Hilbert space has the Banach-Saks property.
We will need several definitions and theorems to reach this. First, we define
weak convergence for a Banach space and state Banach’s Theorem. We then
prove that Hilbert spaces have the Banach-Saks property, and then discuss
other spaces that also have this property.
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2 Weak Convergence

Let X be a Banach space. Typically convergence, that is norm conver-
gence where ∥x− xn∥ → 0 as n → ∞ for some sequence (xn) ⊂ X is too
strong of a requirement. When working in finite dimensional spaces, the
Bolzano-Weierstrass Theorem guarantees that a bounded sequence in Rn

has a convergent subsequence. When moving to infinite dimensions this is
no longer the case. If we want a similar result we instead move to weak
convergence. Weak convergence depends upon the use of the dual space,
denoted X∗ = B(X,R), the set of bounded linear functionals from the set
X to the reals. The second dual X∗∗ = (X∗)∗ is the set of bounded linear
functions from X∗ to R.

Definition 2.1. A sequence (xn) ⊂ X in a normed vector space (X, ∥·∥) is
said to converge weakly to x0 ∈ X if as n → ∞ we have [6, p.257],[10,
p.90]

x∗(xn) → x∗(x0), ∀x∗ ∈ X∗. (2)

This is denoted xn ⇀ x0 as n → ∞ and x0 is called the weak limit of (xn).

Weak convergence is called ”weak” because norm convergence (strong
convergence) implies weak convergence, but not the other way around. Let
(xn) ⊂ X be such that xn → x0 as n → ∞ for x0 ∈ X and let x∗ ∈ X∗. We
have by linearity

|x∗(xn)− x∗(x0)| = |x∗(xn − x0)| . (3)

Noting that x∗ is bounded, we can choose M > 0 such that |x∗(xn − x0)| ≤
M ∥xn − x0∥ so

|x∗(xn)− x∗(x0)| ≤ M ∥xn − x0∥ → 0, n → ∞. (4)

It follows that xn ⇀ x0.

We would like a replacement for the Bolzano-Weierstrass theorem for
infinite dimensions. To get to Banach’s Theorem, we introduce reflexivity.

Definition 2.2. The canonical mapping of X into X∗∗ is defined by [14,
p.276]

x̂(x∗) = x∗(x), (5)

for x ∈ X,x∗ ∈ X∗. The space X̂ are the elements generated by the canonical
mapping, i.e. X̂ = x̂(X) [6, p.107-108].

The canonical mapping gives us a way to generate elements of X∗∗ from
elements of X, so it is immediate that X̂ ⊂ X∗∗. The question is whether
or not this mapping gives us all elements of X∗∗, and if it does the space X
is said to be reflexive.

2



Definition 2.3 (Reflexivity). If X̂ ≡ X∗∗ then X is called reflexive [6,
p.241] [9].

We can now state Banach’s Theorem, which can be proven via the
Banach-Alaoglu Theorem [15].

Theorem 2.1 (Banach). Let (X, ∥·∥) be a reflexive Banach space. Then any
bounded sequence (xn) ⊂ X has a weakly convergent subsequence (xnk

) ⊂
(xn) such that xnk

⇀ x0 ∈ X as k → ∞.

This replaces the Bolzano-Weierstrass Theorem in infinite dimensions.
For example, the sequence (xn) ⊂

3 Hilbert Spaces

Due to the Riesz Representation Theorem [18] weak convergence takes a
particularly nice form in a Hilbert space H, and we also get reflexivity of
H.

Theorem 3.1 (Riesz-Fréchet). For every bounded linear functional f ∈ H∗,
there exists a unique z ∈ H such that [6, p.188],[18, p.62],[14, p.313]

f(x) = ⟨x, z⟩ (6)

for every x ∈ H, satisfying
∥z∥ = ∥f∥ . (7)

The definition of weak convergence within a Hilbert space is then as
follows.

Definition 3.1. A sequence (xn) ⊂ H in a Hilbert space (H, ⟨·, ·⟩) converges
weakly to x ∈ H if and only if [17],[7, p.127],[3, p.98]

⟨xn, z⟩ → ⟨x, z⟩ (8)

as n → ∞ for every z ∈ H.

A typical example of a weakly convergent sequence is any orthonormal
sequence. A sequence (un) is orthonormal if ⟨un, um⟩ = 0 if n ̸= m, and
1 if n = m. All orthonormal sequences tend weakly to zero by Bessel’s
inequality [18, p.34], as for every z ∈ H we have

∞∑
n=1

|⟨un, z⟩|2 ≤ ∥z∥2 (9)

from which we deduce the sum is convergent, hence |⟨un, z⟩|2 → 0 as
n → ∞, that is ⟨un, z⟩ → 0 = ⟨0, z⟩. It is also obvious that (un) does
not converge ”strongly”, in terms of the norm, as for n ̸= m we have (by
Pythagoras) ∥un − um∥2 = ∥un∥2 + ∥um∥2 = 2, so ∥un − um∥ =

√
2. It

follows that (un) isn’t Cauchy, so cannot have any convergent subsequences.
This shows that weak convergence does not imply strong convergence.
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3.1 Banach-Saks Property

Every Hilbert space has the Banach-Saks property [11]. We show this, fol-
lowing the proof given in [14, p.314].

Theorem 3.2. Let (H, ⟨·, ·⟩) be a Hilbert Space. Then for any bounded se-
quence in H there exists a subsequence such that the Cesàro means converge
in H.

Proof. Let (xj)j∈N ⊂ H be bounded. Then, noting H is reflexive, by
Theorem 2.1 there exists a weakly convergent subsequence (xjn) such that
xjn → x0 ∈ H as n → ∞. Now define un = xjn − x0 for each n, which
clearly converges weakly to zero.

Since (un) converges weakly, it is bounded, and there exists some M > 0
such that

∥un∥2 ≤ M (10)

for every n ∈ N. We now want to choose a subsequence (unk
) such that

for every k,

∥un1 + · · ·+ unk
∥2 ≤ (2 +M)k (11)

so that dividing through by k2 yields∥∥∥∥un1 + · · ·+ unk

k

∥∥∥∥2 ≤ 2 +M

k
. (12)

This will be done using induction.
Choose n1 = 1. Since un ⇀ 0, and un1 ∈ H, we can choose n2 ∈ N such

that |⟨un1 , un2⟩| < 1. Now since un ⇀ 0 and un1 , un2 ∈ H, we can choose
n3 > n2 such that both |⟨un1 , un3⟩|, |⟨un2 , un3⟩| < 1. Then

∥un1 + un2 + un3∥
2 = ⟨un1 + un2 + un3 , un1 + un2 + un3⟩ (13)

= ⟨un1 + un2 + un3 , un1⟩+ ⟨un1 + un2 + un3 , un2⟩+ ⟨un1 + un2 + un3 , un3⟩
(14)

= ⟨un1 , un1⟩+ ⟨un2 , un1⟩+ ⟨un3 , un1⟩
+ ⟨un1 , un2⟩+ ⟨un2 , un2⟩+ ⟨un3 , un2⟩
+ ⟨un1 , un3⟩+ ⟨un2 , un3⟩+ ⟨un3 , un3⟩ (15)

≤ M + 1 + 1 (16)

+ 1 +M + 1

+ 1 + 1 +M. (17)

We have three diagonal terms, and using (10) we know these are each
less than M . For the off diagonal terms, we have chosen n1, n2, n3 so that
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these are all less than 1 in magnitude, and there are six of them. This gives
the upper bound

∥un1 + un2 + un3∥
2 ≤ 6 + 3M = (2 +M)3 (18)

For the inductive step, assume that we have chosen natural numbers
n1 < n2 < · · · < nk such that

∥un1 + · · ·+ unk
∥2 ≤ (2 +M)j (19)

for j = 1, . . . , k. Since un ⇀ 0 and un1 + · · · + unk
∈ H we can choose

nk+1 > nk such that

|⟨un1 + · · ·+ unk
, unk+1

⟩| ≤ 1. (20)

Then

∥∥un1 + · · ·+ unk+1

∥∥2 = ∥un1 + · · ·+ unk
∥2 + 2Re

(
⟨un1 + · · ·+ unk

, unk+1
⟩
)
+
∥∥unk+1

∥∥2
(21)

≤ (2 +M)k + 2 +M (22)

= (2 +M)(k + 1). (23)

We now have a subsequence that satisfies∥∥∥∥un1 + · · ·+ unk

k

∥∥∥∥2 ≤ 2 +M

k
(24)

for each k. We can now recover our original sequence, as unk
= xjnk

−x0,
and we have

∥∥∥∥xjn1
+ · · ·+ xjnk

k
− x0

∥∥∥∥2 = ∥∥∥∥xjn1
− x0 + · · ·+ xjnk

− x0

k

∥∥∥∥2 ≤ 2 +M

k
.

(25)
Letting k → ∞ yields the result.

3.2 Examples

We will take an orthonormal sequence as an example. Let (un) ⊂ H be an
orthonormal sequence, and hence bounded. We can simply take nk = k as
the subsequence in this case. We have

∥sk∥2 =

∥∥∥∥∥∥1k
k∑

j=1

uj

∥∥∥∥∥∥
2

=
1

k2

∥∥∥∥∥∥
k∑

j=1

uj

∥∥∥∥∥∥
2

=
1

k2

k∑
j=1

∥uj∥2 =
1

k2

k∑
j=1

1 =
1

k
, (26)
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where we have used the Pythagorean Theorem. It follows that

1

k

k∑
j=1

uj → 0 (27)

as k → ∞. For a more concrete example, take the Hilbert space L2[−π, π]
with functions (fn) ⊂ L2[−π, π] defined by

fn(t) =
1√
π
sin(nt), t ∈ [−π, π]. (28)

It is easily shown that (fn) is orthonormal. It then follows that

1√
πk

k∑
n=1

sin(nt) → 0 (29)

in terms of norm. The Cesàro sum sk is shown in Figures 1a, 1b, 1c for
k = 5, 25, 125 respectively.
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(a) k = 5. The integral is 1/
√
5.
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(b) k = 25. The integral is 1/5.
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(c) k = 125. The integral is 1/
√
125.

Figure 1: The graph of sk(t) over [−π, π] for k = 5, 25, 125. The integrals
tend to 0 as n → ∞.

4 Uniformly Convex Banach Spaces

James A. Clarkson introduced the idea of a uniformly convex Banach space
in his 1936 paper [2]. He states the property geometrically as ”the mid-
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point of a variable chord of the unit sphere of the space cannot approach
the surface of the sphere unless the length of the chord goes to zero.” which
can be seen in Figure 2. Clearly the midpoint of the chord will only be close
the circle boundary when x and y get sufficiently close together.

Figure 2: Geometric interpretation of uniformly convex for a 2d circle.

The rigorous definition is as follows.

Definition 4.1. A Banach space X is said to be uniformly convex if for
each 0 < ε ≤ 2, there corresponds a δ(ε) > 0 such that the conditions [2]

∥x∥ = ∥y∥ = 1, ∥x− y∥ ≥ ε (30)

imply ∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ(ε). (31)

It will be useful to note that uniformly convex Banach spaces are reflex-
ive, which follows by the Milman-Pettis theorem [8],[13]. An alternative and
shorter proof is given by Ringrose [12].

4.1 Hilbert Spaces

Finite and infinite dimensional Hilbert spaces are uniformly convex, due to
the parallelogram law [16]
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∥x+ y∥2 + ∥x− y∥2 = 2 ∥x∥2 + 2 ∥y∥2 . (32)

Setting the required conditions ∥x∥ = ∥y∥ = 1, dividing by 4 and isolat-
ing the ∥x+ y∥2 term yields∥∥∥∥x+ y

2

∥∥∥∥2 + 1

4
∥x− y∥2 = 1. (33)

Letting x, y satisfy ∥x− y∥ ≥ ε,∥∥∥∥x+ y

2

∥∥∥∥2 = 1− 1

4
∥x− y∥2 ≤ 1− 1

4
ε2. (34)

We have chosen δ to be

δ(ε) =
1

4
ε2 =

(ε
2

)2
. (35)

The term ε/2 will appear in the next section.

4.2 Lp and lp Spaces

Now, Clarkson showed that the spaces Lp and lp are uniformly convex [2].
Hanner expanded on this by providing a simpler set of inequalities to prove
this in [4]. The Lp space considered here is Lp[0, 1].

Theorem 4.1. For p > 2 the following inequalities hold

(∥x∥+ ∥y∥)p+ |∥x∥ − ∥y∥|p ≥ ∥x+ y∥p+∥x− y∥p ≥ 2 ∥x∥p+2 ∥y∥p , (36)

holding in the reverse sense for p ∈ (1, 2). The equality sign holds for Lp

[for lp] on the left-hand side if and only if x = 0, or y = 0, or there exists
a number a > 0 such that (x(t) − ay(t))(x(t) + ay(t)) = 0 for almost every
t ∈ [0, 1] [such that (xi − ayi)(xi + ayi) for every i], and in the right-hand
side if and only if x(t)y(t) = 0 for almost every t ∈ [0, 1] [xiyi = 0 for every
i].

This is proven in [2]. If p = 2 we retrieve equation (32), with equal-
ity between all three terms. Now, to show that the mentioned spaces are
uniformly convex, we have the following theorem.

Theorem 4.2. Let x and y be two elements of Lp or lp such that

∥x∥ = ∥y∥ = 1, ∥x− y∥ ≥ ε (37)

for 0 < ε < 2. Then
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∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ(ε), (38)

where δ = δ(ε) is determined by

2 =
(
1− δ +

ε

2

)p
+
∣∣∣1− δ − ε

2

∣∣∣p , 1 < p < 2 (39)

δ = 1−
(
1−

(ε
2

)p)1/p
, p ≥ 2. (40)

For each ε, x and y can be chosen so that equality holds in (38).

4.3 Banach-Saks Property

In [5] it is shown that a uniformly convex Banach space has the Banach-Saks
property. We include this proof here. Kakutani introduces an equivalent
formulation of uniform convexity, stated in the following proposition.

Proposition 4.1. A Banach space X is uniformly convex if and only if for
each ε > 0 there corresponds a δ′(ε) > 0 such that the condition

∥x− y∥ ≥ ε ·max (∥x∥ , ∥y∥) (41)

implies ∥∥∥∥x+ y

2

∥∥∥∥ ≤
(
1− δ′(ε)

)
·max (∥x∥ , ∥y∥) . (42)

This is a useful reformulation, and can be used to prove the following.

Theorem 4.3. If a Banach space is uniformly convex, it has the Banach-
Saks property [5].
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